Lessons learned from bacterial transport research at the South Oyster Site
Publication Year
2011
Type
Journal Article
Abstract
This paper provides a review of bacterial transport experiments conducted by a multiinvestigator, multiinstitution, multidisciplinary team of researchers under the auspices of the U.S. Department of Energy (DOE). The experiments were conducted during the time period 1999-2001 at a field site near the town of Oyster, Virginia known as the South Oyster Site, and included four major experimental campaigns aimed at understanding and quantifying bacterial transport in the subsurface environment. Several key elements of the research are discussed here: (1) quantification of bacterial transport in physically, chemically, and biologically heterogeneous aquifers, (2) evaluation of the efficacy of conventional colloid filtration theory, (3) scale effects in bacterial transport, (4) development of new methods for microbial enumeration and screening for low adhesion strains, (5) application of novel hydrogeophysical techniques for aquifer characterization, and (6) experiences regarding management of a large field research effort. Lessons learned are summarized in each of these areas. The body of literature resulting from South Oyster Site research has been widely cited and continues to influence research into the controls exerted by aquifer heterogeneity on reactive transport (including microbial transport). It also served as a model (and provided valuable experience) for subsequent and ongoing highly-instrumented field research efforts conducted by DOE-sponsored investigators. © 2011 Battelle Memorial Institute. Ground Water © 2011 National Ground Water Association.
Keywords
Aquifer characterization,
Aquifer heterogeneity,
Bacterial transport,
Colloid filtration theories,
Experimental campaign,
Field research,
Heterogeneous aquifers,
Hydrogeophysical,
Key elements,
Low adhesion,
Microbial enumeration,
Microbial transport,
Multi-disciplinary teams,
Reactive transport,
Scale effects,
Subsurface environment,
Time-periods,
U.S. Department of Energy,
Virginia,
Aquifers,
bacteriology,
Experiments,
filtration,
Hydrogeology,
Shellfish,
Research and development management,
aquifer,
bacterium,
colloid,
experimental study,
field method,
filtration,
movement,
research work,
scale effect,
temporal analysis,
bacterium,
isolation and purification,
microbiology,
review,
United States,
Bacteria,
Virginia,
Water Microbiology,
Oyster,
United States,
Virginia,
Bacteria (microorganisms),
Ostreidae
Journal
Ground Water
Volume
49
Pages
745-763